Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions.
نویسندگان
چکیده
The focus of the present work is to provide an analysis for the acoustic and thermal properties of the energy-conserving lattice Boltzmann models, and a solution to the numerical defects and instability associated with these models in two and three dimensions. We discover that a spurious algebraic coupling between the shear and energy modes of the linearized evolution operator is a defect universal to the energy-conserving Boltzmann models in two and three dimensions. This spurious mode coupling is highly anisotropic and may occur at small values of wave number k along certain directions, and it is a direct consequence of the following key features of the lattice Boltzmann equation: (1) its simple spatial-temporal dynamics, (2) the linearity of the relaxation modeling for collision operator, and (3) the energy-conservation constraint. To eliminate the spurious mode coupling, we propose a hybrid thermal lattice Boltzmann equation (HTLBE) in which the mass and momentum conservation equations are solved by using the multiple-relaxation-time model due to d'Humières, whereas the diffusion-advection equation for the temperature is solved separately by using finite-difference technique (or other means). Through the Chapman-Enskog analysis we show that the hydrodynamic equations derived from the proposed HTLBE model include the equivalent effect of gamma=C(P)/C(V) in both the speed and attenuation of sound. Appropriate coupling between the energy and velocity field is introduced to attain correct acoustics in the model. The numerical stability of the HTLBE scheme is analyzed by solving the dispersion equation of the linearized collision operator. We find that the numerical stability of the lattice Boltzmann scheme improves drastically once the spurious mode coupling is removed. It is shown that the HTLBE scheme is far superior to the existing thermal LBE schemes in terms of numerical stability, flexibility, and possible generalization for complex fluids. We also present the simulation results of the convective flow in a rectangular cavity with different temperatures on two opposite vertical walls and under the influence of gravity. Our numerical results agree well with the pseudospectral result.
منابع مشابه
Numerical simulation of a three-layered radiant porous heat exchanger including lattice Boltzmann simulation of fluid flow
This paper deals with the hydrodynamic and thermal analysis of a new type of porous heat exchanger (PHE). This system operates based on energy conversion between gas enthalpy and thermal radiation. The proposed PHE has one high temperature (HT) and two heat recovery (HR1 and HR2) sections. In HT section, the enthalpy of flowing high temperature gas flow that is converted to thermal radiation em...
متن کاملA Comparative Solution of Natural Convection in an Open Cavity using Different Boundary Conditions via Lattice Boltzmann Method
A Lattice Boltzmann method is applied to demonstrate the comparison results of simulating natural convection in an open end cavity using different hydrodynamic and thermal boundary conditions. The Prandtl number in the present simulation is 0.71, Rayleigh numbers are 104,105 and 106 and viscosities are selected 0.02 and 0.05. On-Grid bounce-back method with first-order accuracy and non-slip met...
متن کاملNatural Convection and Entropy Generation in Γ-Shaped Enclosure Using Lattice Boltzmann Method
This work presents a numerical analysis of entropy generation in Γ-Shaped enclosure that was submitted to the natural convection process using a simple thermal lattice Boltzmann method (TLBM) with the Boussinesq approximation. A 2D thermal lattice Boltzmann method with 9 velocities, D2Q9, is used to solve the thermal flow problem. The simulations are performed at a constant Prandtl number (Pr ...
متن کاملUsing the Lattice Boltzmann Method for the numerical study of non-fourier conduction with variable thermal conductivity
The lattice Boltzmann method (LBM) was used to analyze two-dimensional (2D) non-Fourier heat conduction with temperature-dependent thermal conductivity. To this end, the evolution of wave-like temperature distributions in a 2D plate was obtained. The temperature distributions along certain parts of the plate, which was subjected to heat generation and constant thermal conductivity condit...
متن کاملImplementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems
In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...
متن کاملNumerical Study of Bubble Separation and Motion Using Lattice Boltzmann Method
In present paper acombination of three-dimensional isothermal and two-dimensional non-isothermal Lattice Boltzmann Method have been used to simulate the motion of bubble and effect of wetting properties of the surface on bubble separation. By combining these models, three-dimensional model has been used in two-dimension for decreasing the computational cost. Firstly, it has been ensured that th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 68 3 Pt 2 شماره
صفحات -
تاریخ انتشار 2003